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Figure 1. An overview of CAPturAR workflow. (a) A user conducts daily-life activities wearing a customized augmented reality head mounted device
(AR-HMD). (b) The user visualizes his previous actions with context information in AR environment. (c) The user builds an event with a human action
and context attributes, and connect the event to an IoT function to author a context-aware application. (d) When the event is detected, the IoT function
is triggered.

ABSTRACT
Recognition of human behavior plays an important role in
context-aware applications. However, it is still a challenge for
end-users to build personalized applications that accurately rec-
ognize their own activities. Therefore, we present CAPturAR,
an in-situ programming tool that supports users to rapidly au-
thor context-aware applications by referring to their previous
activities. We customize an AR head-mounted device with
multiple camera systems that allow for non-intrusive capturing
of user’s daily activities. During authoring, we reconstruct the
captured data in AR with an animated avatar and use virtual
icons to represent the surrounding environment. With our
visual programming interface, users create human-centered
rules for the applications and experience them instantly in AR.
We further demonstrate four use cases enabled by CAPturAR.
Also, we verify the effectiveness of the AR-HMD and the
authoring workflow with a system evaluation using our pro-
totype. Moreover, we conduct a remote user study in an AR
simulator to evaluate the usability.
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INTRODUCTION
The concept of ubiquitous computing [73] has been gradually
substantiated by the rapid growth of the Internet of Things
(IoT) products [52]. One of the critical differentiators between
the emerging IoT and the classic telecontrol system is the
intelligence introduced by IoT’s context-awareness. Under-
standing the context of users and environments empowers the
smart things to deliver timely and appropriate service without
explicit interference from users [57]. With the IoTs acting
as perception units, inferring environmental contexts, such
as room temperature, lighting, moisture, etc., can be easily
achieved. Although accurately inferring activity is an essential
component of an advanced context-aware application (CAP),
it remains challenging.

Firstly, human actions are pervasive and spatial. A mean-
ingful action may happen anywhere, such as drinking coffee
in a living room, doing yoga in a bedroom. Secondly, hu-
man actions can be delicate and complex. An action may
involve the movement of the human body and both hands, and
sometimes with objects. Thirdly, human actions are ambigu-
ous and subtle. The intention of an action usually depends
on relevant context information such as objects, location and
time. For instance, picking up a cup in the morning and in
the evening could suggest different intentions, i.e., drinking
coffee and drinking milk.
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One way of enabling pervasive human action detection is by
embedding more advanced sensors into our surroundings, such
as RFID [9], electric field [80], acoustic [40], and vision-based
sensing [35, 55]. However, these sensors are embedded into
the environment or the objects, which implies the scalability of
CAPs will be greatly hampered. As an essential complemen-
tary component in IoT, wearable devices provide a promising
approach to address the pervasiveness of human actions due
to its always-on and always-with-user nature. Also, the CAPs
built with wearable platforms are less dependent on the exter-
nal infrastructures, as their perception capabilities are intrinsic.

Research has shown multiple non-vision approaches for action
detection [13], but they often suffer from coarse granularity.
Moreover, these methods are usually dedicated to human ac-
tion detection, which may fail in cases of human-object interac-
tions. Computer vision, on the other hand, is more accessible
as a general human activity detection method. Moreover, to
incorporate the challenge of pervasiveness, we need a wear-
able platform for the sensors. In particular, the emerging AR
head mounted devices (AR-HMD) offer rich environmental
sensing capabilities, including 6 degrees of freedom (DoF)
tracking and an egocentric vision system that provides high-
quality data for accurate inferring the delicate human-object
interactions.

With a large amount of data, the computer vision commu-
nity has made great progress on human action detection with
pre-trained models [23, 82, 46]. But, when it comes to human-
object interactions, users’ spontaneous and diverse activities
which are highly context sensitive, can easily invalidate a gen-
eral model. Besides, the end-users can better disambiguate and
interpret the contexts from their recorded actions[19, 8]. As
an always-on wearable in the future, AR-HMDs have strong
potentials for end-users to record their intentional and uninten-
tional activities [56, 51] in a human-centered way.

Furthermore, compared to a traditional GUI, users directly
experience the advantages of in-situ visualization of human
activities through virtual human avatars and replicas of the ob-
jects in AR [11, 47]. An AR authoring interface allows users
to intuitively view their own previous actions and precisely
label the desired motions for training. Moreover, users can
freely walk around in the authoring AR scene and perform
spatial interactions with the replicas of ordinary objects and
IoTs [30, 32, 21]. This way, users can easily associate the mo-
tions with relevant context information from the environment
and IoTs.

To this end, we propose CAPturAR, an AR authoring work-
flow, which allows users to record their daily activities, revisit
the recorded scenarios, create and improve their personal con-
text models, then build and deploy their own customized CAPs
onto AR-HMD platforms. We demonstrate our workflow with
a video-see-through AR-HMD modified with an additional
downward-looking fisheye camera (Figure 1). Together with
the front depth camera, we are able to reconstruct the 3D pose
of the user’s upper body and detect hand-object interactions
in real-time. Wearing this device while conducting daily ac-
tivities, users’ moving trajectories, body actions, and hand
interactions will be captured and associated with the map of

the environment. In the authoring stage, the recorded scenarios
are represented by an avatar and virtual replicas of the objects
in AR. We design the interface of CAPturAR to allow fast
navigation through the timeline and precise selection of the
activity clips from the cluttered recordings. Then, based on
users’ understanding of their past behaviors, they interpret the
selected demonstration clips as contexts and generate detec-
tion models with the motion data. Users can also designate
necessary contextual information (e.g., time, location, objects)
to disambiguate the activities. Further, users test human action
detection performance and refine the context models through
iterations. After users are satisfied with the detection perfor-
mance, they can design the rules of the CAPs using our spatial
programming interface in AR. After authoring, users can ex-
perience the functions of the CAPs instantly. In summary, we
highlight our contributions as follows.

• An all-in-one workflow for create human-involved context
models using end-users’ realistic daily activities and author
customized context-aware applications in AR.

• An integrated AR-HMD platform composed of multiple
camera systems which allows for non-intrusive recording
of end-users’ activities and context detecting while running
CAPs.

• An AR authoring interface for browsing, selecting and
editing previous activities, and creating flexible context-
aware applications through spatial interaction and visual
programming.

RELATED WORK

End-user programming for context-aware applications
We focus on allowing end-users to define the contextual in-
formation and the desired task-relevant service [18] in a clear
and intuitive manner. Towards this goal, an "if...then..." rule-
based approach, namely trigger-action programming, is widely
adopted. And many end-user programming interfaces are pro-
posed to support fluent authoring of rule-based CAP. In a typi-
cal IFTTT flow [33, 72], users directly fill in a "if <this> then
<that>" sentence with IoT related events to create a trigger-
action pair. Alternatively, iCap [20] provided a GUI for users
to define their trigger and action events through sketch and
description. To make the authoring process easy to understand,
visual programming interfaces are implemented by substanti-
ating events to visual representations such as icons and arrows
[17, 62, 3], magnets [71], and jigsaws [31, 16]. Further, to
provide an in-situ and spatial aware authoring experience, re-
searchers proposed tangible interfaces [7, 15, 43, 45]. By
simply interacting with the IoTs, users can record their actions
and create CAP based on the records.

Most of the proposed end-user programming interfaces are
device-centered and limited to IoT-only interactions. Human
actions, however, are not well supported in such interfaces
mainly because of the lack of abilities to detect and visualize
human actions. CAPturAR provides an always-on activity
recording and detecting and enables end-users to customize
sophisticated context models. We also expand the scope of
human interactions with specialized IoT devices [44, 79, 64]
to daily ordinary objects. Further, as an AR authoring tool,



CAPturAR supports users to visually program the rules in-situ
by spatially connecting the context action and an IoT function.

Authoring through embodied demonstration
The embodied demonstration allows users to use shape, posi-
tioning, and kinematics of their bodies as spatial references and
create complex and dynamic content intuitively. Researchers
have applied embodied demonstrations in interactive 3D mod-
eling [38, 42, 78], instant creation of stories and animations
[26, 29, 63], and generating realistic tutorials [10, 14, 27]. Re-
cently, GhostAR [11] proposed a workflow where end-users
program human-robot collaboration tasks using their demon-
strations as space-time reference.

Further, embodied demonstrations have been leveraged to cus-
tomize gestures or action detection algorithms. Lv et al. [49,
50] enabled end-users to design multi-touch gestures on tablets.
ACAPpella [19] allowed users to interact with multiple sensors.
Exemplar [28] and M.Gesture [37] supported rapid iteration
and fine tune of the gestures after the demonstration. While
MAGIC [5] enabled users to build a classification algorithm
by acting multiple gestures. Most of such works employed
a typical workflow of demonstrate-edit-test. Namely, users
first demonstrate the action, edit or label the captured data
using a GUI, then perform the actions again to test the classi-
fier. And users may have to go through the steps repeatedly to
generate more demonstrations and improve the performance.
Thus, such workflow works best for intentional and short ges-
tures. CAPturAR focuses on capturing arbitrarily long human
actions in daily life which include both unintentional and in-
tentional patterns. Instead of acting the demonstrations one
by one, CAPturAR provides fast browsing and selection of
desired actions from cluttered and lengthy recordings. More-
over, we assist users to identify similar patterns by applying
a pattern recognition algorithm to the entire recording. Then
users can refine the action recognition algorithm by simply
labeling the false positive and the true positive ones.

Human action detection in smart environment
As an enabling technology to achieve context-aware com-
puting, human action detection has been extensively studied.
Various types of sensors are developed to detect human ac-
tion following either an environmental or wearable approach.
Researches have experimented with multiple technologies for
sensors deployed in the surroundings or the objects, such as
RFID[58, 44], capacitive sensing [53, 64], electric filed sens-
ing [80], vibration and sound detection [81, 40]. Recently,
Sozu [79] also presented activities detection by harvesting
energy flow. Nonetheless, these methods require users to be
close to the sensors or interacting with them. And the cost
of deploying and maintaining the environmental sensors is
usually high. On the other hand, wearable sensors can monitor
human action continuously in an unobtrusive way. Typical
wearable sensors includes accelerometers [41, 34, 2], GPS
[60, 4] and biosensors [76, 65]. However, these wearable
sensors are not suitable for detecting complex and delicate mo-
tions. Also, in some cases, wearable sensor outputs are often
fused with other sources of information to achieve accurate
detection.

Meanwhile, vision-based approaches are proposed by install
cameras in the environment [77]. Further, researchers use
egocentric wearable cameras to detect human actions [59, 69,
22, 36, 48]. By sharing the same view with users, egocentric
cameras capture the user’s hand movements and detect the in-
volved objects, which allows for accurate detection of complex
context. More importantly, instead of using a front-looking
camera, Xu et al. [75] and Tome et al. [70] used a downward-
looking fisheye camera that covers all limbs. Thus the 3D
human pose can be retrieved without carrying extra hardware
which allows users to freely conduct daily activities. Inspired
by these works, we build a customized AR-HMD with multi-
ple camera systems to empower context-aware human action
detection.

CAPTURAR

Integrated AR-HMD platform
We customize an AR-HMD that enables human and context
perception for CAPturAR. Our prototype is composed of a
VR headset, a forward-facing stereo camera, and a downward-
looking fisheye camera as in Figure 2 (a). The stereo camera is
responsible for providing video-see-through AR experiences.
Also, it is equipped with object detection algorithm and tracks
the 3D positions of surrounding objects. The fisheye camera
covers the user’s limbs within its field of view (Figure 2 (b)),
supporting always-on reconstructions of the human skeleton in
a non-intrusive hands-free manner. The reconstructed human
skeleton is used for human action detection and visualization
in the AR authoring interface (Figure 2 (c,d)). We further de-
tect human-object interactions by combining results of human
pose and object detection. Additionally, we obtain the spatial
trajectory of the user from the 6-DOF tracking supported by
the VR headset.

d

b

c

a

Figure 2. System hardware setup. (a) The customized AR-HMD with
a stereo camera and a fisheye camera. (b) Fisheye camera view. (c)
The AR-HMD is connected to a backpack computer. (d) Reconstructed
virtual avatar.

CAPturAR system walk-through
We demonstrate the workflow of CAPturAR with a rule-based
CAPs example scenario in the teaser figure. After getting
up in the morning, the user would routinely pick up the cup
and go to the kettle to make some hot tea. With CAPturAR,
the user can create a CAP that automatically turns on the
kettle and starts preparing the hot water as soon as the user
picks up the cup. To author a CAP with the CAPturAR, the
system first record the user’s daily activities (Figure 1 (a)),
and then these activities can be visualized in-situ by the user



as avatar cursor for human motions, and context attribute
for smart thing interactions as well as other abstract spatial
and temporal context information (Figure 1 (b)). The user
can click on the object of interest to view all its past human
interactions (Figure 1 (b)). Then the user selects the segment
of picking-up action using the avatar cursor and links it to the
cup object. Now the user has authored an event with a picking-
up human action and a context attribute which is the cup. The
event enables CAPturAR to infer the user’s intention and do
a specific thing if that event happens. The user wonders if he
has authored this event correctly and CAPturAR can properly
detect it. CAPturAR offers a function to improve the model
by labeling similar events in the recording. Similar events
denote the situations that CAPturAR would infer the same
intention as the event authored by the user. By browsing the
Similar events, the user finds out that CAPturAR mistakenly
detects holding a cup as picking-up it. Thus he notes the
holding cup as a negative example to avoid false positive
detection. The user also realizes that picking-up a cup in the
evening is also considered as similar, so he adds a third context
attribute to the event, which is time as morning. At this step,
the user is satisfied with his definition of the event and moves
on to complete this CAP by connecting this event with an IoT
function, the kettle’s switch, as illustrated in Figure 1 (c). Next
time when the user picks up the cup in the morning, the kettle
will be automatically turned on, as shown in Figure 1 (d). To
summarize, a user first finds a meaningful human action, then
attach values of context attributes to make an event. After that,
the user verifies the event by browsing the similar events and
completes the CAP by linking the event to an IoT function.

Framework of CAPturAR
The framework of our system is illustrated in Figure 3. CAP-
turAR borrows the metaphor from object-oriented program-
ming [74] and substantiates the abstract context information
as human action, context attribute and events. The authoring
workflow guides the user to build events with human actions
and context attributes, and then create CAPs by connecting
events with IoT functions.

Human action is a body movement that reveals the user’s
intention. In CAPturAR, we represent human action by a
sequence of human poses. we let a user define a human
action by selecting a segment from his/her recorded actions.

Context attributes are descriptors of the surrounding context.
Dey et al. [20] made a summary of the categories to describe
the context from end-users’ perspectives: activity, object, lo-
cation, time, person, and state. While the activity and person
are usually used to describe users themselves, we design CAP-
turAR to perceive the following types of Context attributes.

• Object, the object or smart thing that is involved.

• Location, the spatial property of the user.

• Time, the time during the day.

• State, the state of IoTs, e.g. light on/off.

The values of the context attributes are recorded synchronously
with the human action of the user and saved in context

database. Context database enables users to search for human
actions by specifying the values of context attributes.

An Event comprises a meaningful human action and values
of relevant context attributes. For instance, the user in the
CAPturAR system walk through section creates an event
with a human action of picking up and two context attributes,
the object attribute which is cup and the time attribute which
is morning.

Similar events are generated by comparing a user created
event with all data in context database. Thus, similar events
the same context attribute values with the user created event
and have similar human actions. We design similar events for
two purposes. Firstly, by browsing the similar events, users
can see various situations when the event is triggered, which
helps the users to debug their authoring and specify more
detailed context information. Secondly, we let users label the
similar events as negative or positive to train the human action
detection algorithm with more examples.

Event

Model Input: Current Context Status

Temporal Property

Inversion Delay Duration

Model Output: 
Event Triggered
or Not Triggered

DTW

a

b

c

d

Authoring

Figure 3. Framework of CAPturAR. (a) User conducts daily activities.
(b) The human actions and the status of context attributes are times-
tamped and recorded in context database. (c) User creates events based
on recorded actions. (d) CAPturAR detects events by comparing human
actions and context attributes.

Detecting events
As a rule-based authoring system, CAPturAR enables CAPs by
detecting events. To detect an event, CAPturAR first acquires
the current values of the human action and context attributes
(object, location, etc.) and then compares them with the values
saved in the event as in Figure 3 (c) and (d). The event is
considered as happening if all these elements match.

To detect a human action, CAPturAR collects a sequence of
human poses from the fisheye camera to form the current
human action. Then calculates its Dynamic Time Warping
(DTW) distance with the one saved in the event. CAPturAR
assumes the human action of the event happens if the DTW



distance is below a threshold. Further, if there are multiple
events, CAPturAR uses the nearest neighbor algorithm to
decide which one is actually happening.

For context attributes, CAPturAR considers an object as cur-
rently involved if it is spatially close to one of the hands. Our
system uses a fisheye camera to locate the hand positions and
uses a front-facing stereo camera to obtain the object position.
The values of location and time can be easily acquired given
the 6-DOF tracking and internal clock of the AR-HMD. Mean-
while, the state attribute is acquired by communications with
the IoTs. Currently, CAPturAR uses simulated IoTs in AR
while there is no problem to scale to real IoTs.

If the user has labeled similar events, CAPturAR then com-
pares the current status of the context with all similar events
as well as the original event and uses a nearest neighbor al-
gorithm. The event is detected if the current human action
has a small DTW distance with any of the positive labeled
similar events. But the event will not be considered happen-
ing if the current human action has a shortest DTW distance
with a negative labeled similar event. Consequently, the false
positive rate can be reduced while the true positive rate can be
increased.

When an event is detected, usually the corresponding IoT func-
tions are triggered immediately to deliver timely service. On
the other hand, we explore different temporal properties of
events, namely inverse (triggers while actually not happening),
delay (triggers after happening for a while) and duration (trig-
gers after continuing for a while), as well as logical properties
among multiple events, namely sequential (triggers only if A
then B) and parallel (triggers if A or B). We embed these prop-
erties in CAPturAR authoring interface to allow for flexible
rule-based CAPs.

In-situ authoring in Augmented Reality
Leveraging the advantages of AR in in-situ visualization and
spatial interaction, we are able to build an integrated authoring
interface that combines low-level operations such as generat-
ing embodied demonstrations, with high-level visual program-
ming that creates CAPs with flexible triggering logic. Users
author CAPs by going through two modes sequentially: Event
Mode (Figure 4) and Logic Mode (Figure 5). In Event Mode,
users can build events by selecting context attributes and hu-
man actions. In Logic Mode, users can connect the events to
IoT functions to create CAPs. Users interact with the author-
ing interface through a VR hand-held controller. Particularly,
we design the following features in AR authoring interface to
enable a smooth authoring experience.

An avatar cursor for conveniently browsing, manipulating
and selecting recorded actions. The avatar cursor is an in-situ
placed human-avatar (Figure 4) in Event Mode that represents
the pose of the user at a point of time in the past. Just like the
cursors in video editing software, users can move the avatar
cursor forward and backward using the directional buttons on
the hand-held controller to browse the action, and look for the
start and end point of an action. Further, users can select a part
of recorded actions with avatar cursor in a similar hold-and-
drag manner as selecting a part of text on a PC. Meanwhile,

the values of all the other context attributes are temporally
synchronized and update themselves correspondingly as the
user moves the avatar cursor.

AR virtual contents that substantiate the context attributes and
events for clear visualization and intuitive operations (Figure
4). Object attributes are displayed as virtual models super-
imposed onto the real objects. The positions of the object
attributes are synchronized with the avatar cursor to illustrate
human object interaction. The abstract context information
such as IoT state, time, and temperature is described by spa-
tially placed icons and words. Further, users can specify a
location attribute by directly drawing a circle on the floor.
Events are represented by event nodes. By pointing at the
event node, the corresponding human action plays repeatedly
to illustrate the action. Through the menu above the event
node, users can edit this event, go to another event, find simi-
lar events, or delete this event. While editing an event, users
can add context attributes to it or add new segments of hu-
man actions. All elements belonging to the same event are
displayed in the same color. If the user goes to another event,
the context attributes will be reset to the default color (blue)
for future editing.

Event Node Edit Next Similar Delete

Avatar Cursor Human Action

Object

Location

State0off

evening

Time

Figure 4. Event Mode of CAPturAR user interface. Left, the avatar
cursor, which is navigated to a pill bottle related action by using the pill
bottle as a suggestion. To the right shows an event of reading book close
to sofa in the evening.

A suggestion function in Event Mode for rapidly navigation
among the long record of previous actions using context at-
tributes. Users may have accumulated long records of their
actions, which makes it difficult to search for an action. Since
the context attributes status are timestamped, users can select
some context attributes as suggestions to navigate the avatar
cursor to the time points that are relevant to those context
attributes. In Figure 4, the user selects the pill bottle as a
suggestion, then the avatar cursor will navigate to the actions



involving the pill bottle. Users may also adjust the value of IoT
states and time attributes while using them as suggestions. Fur-
ther, users can also select multiple suggestions. For instance,
a user can select time adjusted to morning as an additional
suggestion to find the actions interacted with the pill bottle in
the morning.

Inverse
Logic 

Connections

IoT FunctionsEvent Nodes

Temporal 
Properties Delay Duration

Figure 5. Logic Mode of CAPturAR user interface. Left, If taking a pill
from the pill bottle, the number of the pills minus one. Right, If reading
book near by the sofa, turn on the light.

A visual programming interface in Logic Mode (Figure 5).
In Logic Mode, both events and IoT functions are spatially
presented so that users can create rule-based CAPs by simply
linking event nodes with IoT functions using arrows as logic
connections. Further, users can connect one event node to
another to implement a sequential logic, or connect multiple
event nodes to one IoT functions to implement a parallel logic.
Additionally, users can attach temporal properties (inverse,
delay, duration) to events using the add-on menu above the
event node.

USE CASE SCENARIO
With CAPturAR, users can program their actions to create
context-aware applications and build smart interfaces for their
surrounding environment. Here we demonstrate four different
CAPs in household scenarios.

Augment non-smart objects
CAPturAR is aware of the user’s interaction with non-smart
objects. Leveraging the AR interface, users can attach digital
functions, which can be triggered by their actions, to non-
smart objects. Here, we augment a kettle, a pill bottle and
a wipe can with a timer function, a counter function, and a
reminder function respectively (Figure 6).

Healthy life reminder
The object-oriented authoring interface of CAPturAR enables
users to manipulate and connect multiple events and build
CAPs based on a series of related activities. Here a user wants
CAPturAR to remind him/her to do some dumbbell-liftings
after 30 minutes of reading without any exercises. As shown
in Figure 7, the user authors a reading-book event with a

a b c

Figure 6. Augment non-smart objects. (a) The time starts to count down
when the user turns on the kettle. (b) The number of pills in the pill
bottle minus one when the user takes a pill. (c) The wipe bottle reminds
the user to clean the table when the user stands up.

temporal property of duration 30 minutes, and connects to a
dumbbell-lifting event with a inverse property. The dumbbell-
lifting event is further connected to a reminder function on
the dumbbell. Thus, if the user has read for 30 minutes, CAP-
turAR will check if he/she has done any dumbbell-lifting. If
no dumbbell-lifting is performed, a reminder will pop up.

After reading for 30 minReading-book 
(Duration)

Dumbbell-
lifting
(Inverse)

Notifier

a cb

Figure 7. Healthy life reminder. (a) Two sequentially connected events
with a duration and a inverse property respectively. (b) The user has to
do exercise every 30 minutes of reading. (c) The system reminds the user
if no dumbbell-lifting is detected within the past 30 minutes.

Sequential task tutorial
Leveraging the realistic visualization of human actions in AR,
CAPturAR can also create embodied and adaptive tutorials
for sequential tasks. A tutor wants to demonstrate his/her
routine task of repairing a bike, so he/she creates a CAP using
CAPturAR with three sequentially connected events, shaking
the lubricant, spreading it on the front wheel and then on the
back wheel. A novice comes and follows the tutorial (Figure
8). CAPturAR detects once the novice completes a step and
starts to play the demonstration of the next step.

a b c d

Figure 8. Sequential task tutorial. When the novice has finished the
current step, next step automatically reveals as reference.

Tangible AR game creation
CAPturAR makes the user’s surrounding environment a play-
ground that can be interacted with through actions. Here a
user used to throw cans into a rubbish bin, so he/she creates an
AR game of basketball shooting as shown in Figure 9. Once
he/she picks up an empty coke can, CAPturAR detects the
action and attaches a virtual basket and a virtual basketball to
the rubbish bin and coke can respectively.
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Figure 9. Tangible AR game creation. As the system detects a shooting
action, the AR game is activated.

IMPLEMENTATION
System hardware and software setup
We build our customized AR-HMD as shown in Figure 2 with
1) a VR headset (Oculus Rift S [1]) with embedded SLAM,
2) a front-facing stereo camera (ZED Dual 4MP Camera [68],
720p, 60fps) for video-see-through AR and object detection
and 3) a downward-looking fisheye camera (1080p, 60fps, 180
deg FOV) attached to the bottom of the VR headset. The AR-
HMD is connected to a backpack computer (HP VR Backpack
G2, Intel Core i7-8850H, 2.6GHz CPU, 32GB RAM, NVIDIA
RTX 2080 GPU). The CAPturAR AR authoring interface is
developed using Unity3D(2019.2.12f1). To interact with the
AR authoring interface, we use an Oculus Touch controller.

Retrieve human body pose from fisheye camera view
We built and trained a deep neural network (DNN) to retrieve
3D body pose from the fisheye camera, as shown in Figure 10.
The DNN comprises two concatenated parts. For the first part
we adopt the convolutional pose machine structure presented
in OpenPose [12] with VGG19 [66] backbone to detect 2D
locations and orientations of joints in fisheye images. For
the second part, we use a customized convolutional neural
network (CNN) to infer the 3D joints positions from 2D. The
DNN runs on the backpack computer with Tensorflow 2.0 [25]
at 24Hz. To further convert the joint positions into a realistic
human avatar, we use FinalIK Unity3D plugin [24]. To train
the DNN, we used a Kinect Azure [6] to collect ground truth
data of the 3D joints position. Meanwhile, we took fisheye
camera images as the training input. The ground truth of 2D
joints locations and orientations were obtained by projecting
the 3D joints positions onto the fisheye camera images [54].
In total, 170K images were collected from 35 volunteers. The
two parts of the DNN are trained separately. The first part took
24h on an NVIDIA 2080Ti GPU, and the second took 12h on
the same GPU.
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Figure 10. Upperbody Tracking Network Structure.

Detect interaction with objects
To track 3D positions of objects, we first use the Yolo v3
[61] implemented in OpenCV for Unity [67] to find the 2D

positions on the RGB image from the ZED stereo camera.
Then we reproject the 2D position back to 3D using ZED’s
depth image. Any object which is out of the field of view is
assumed to be stable. To detect user’s interactions with small,
movable objects, we measure the distance between the objects
and the user’s left or right hands and detect interaction if the
distance is below 10cm. For large and fixed appliances such as
lamps, we detect interaction whenever the user is close to the
appliances. We trained the Yolo v3 to detect 15 daily objects
including cup, kettle, pill bottle, book, coke can, wipes can,
etc. for study and demo purpose. For each object, we collected
approximately 2000 images using the method mentioned in
[39]. The training took 12h on an NVIDIA 2080Ti GPU.

PRELIMINARY SYSTEM EVALUATION
The CAPturAR workflow relies on the capabilities of the
integrated AR-HMD platform, namely body-pose tracking,
human-object interaction, and human action recognition. To
evaluate these capabilities, we conducted a 3-session prelimi-
nary system evaluation.

Accuracy of upper-body pose tracking
Accurate tracking of body pose plays an important role in
human action detection and virtual avatar reconstruction. To
test the tracking accuracy of our customized AR-HMD, we
compared the 3D positions of the 12 upper-body joints ac-
quired by the fisheye camera with results from a Kinect Azure
camera, which were used as ground truth. During the test, the
tester performed 10 common movements such as picking up,
putting down, lifting with both hands continuously while the
data points were collected at 4Hz automatically. Figure 11
(a) demonstrates four poses during the test. Three researchers
participated in this test and collected 825 data points in total.
We then calculated the distances between joints positions from
Kinect Azure and fisheye camera and present the results in
Figure 11 (b). The average error is 4.34cm (SD = 3.59cm).
Typically, the joints of the pelvis and both hands produced
larger errors. Possibly because those joints are far from the
pivot and have larger movements. The left hand produced the
largest error (8.56cm (SD = 5.58cm)) which was still smaller
than the length of half palm. Thus, the customized AR-HMD
has a similar tracking ability as Kinect Azure and can satisfy
the requirement of tracking human actions precisely.

Accuracy of detecting human-object interaction
We aimed to test the accuracy of detecting human-object in-
teraction in temporal and spatial domains. Specifically, we
measured two values, 1) start and end time of the interaction
and 2) the distance between the object and the hand during the
interaction. We included 6 objects in the experiment. Figure
12 (a) shows the first-person view of the tester. During the test,
the tester picked up an object, interacted with the object for
approximately 10 seconds, then put the object back, and re-
peated the process with other objects. The test was performed
3 times by 3 researchers respectively. For the ground truth
of the interaction time, we recorded the egocentric view of
the tester and retrieved the time from the video. In total, 18
interactions (3 interactions with each object) and 36 start and
end times (6 for each object) were recorded. We present the
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result in Figure 12 (b). The average interaction time error is
0.42s (SD = 0.14s) and average hand-object distance during
the interaction is 4.68cm (SD = 2.40cm). The result indicates
that CAPturAR can detect human-object interaction accurately.
Further, realistic visualization of human action with objects,
i.e. object follows the avatar’s hand, can be constructed.
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Performance of human action detection
CAPturAR detects human action by applying DTW distance
and nearest neighbor algorithm human pose sequence acquired
by the fisheye camera. To quantify the performance of this
method, we applied the same approach to a classification
task with 10 daily actions as listed in Figure 13. For each

action, we collected 10 samples using the fisheye camera. All
the samples were collected from one researcher. We equally
divided the samples into two sets and applied a 2-fold cross-
validation method to calculate the classification accuracy. We
present the result as a confusion matrix in Figure 13. The
overall classification accuracy is 89%, which implies enough
accuracy but still requires additional context information for
more robust detection.

Pick up the object with both hands.
Manipulate the object with both hands.
Put down the object with both hands.
Reach out both hands.
Pick up the object with right hand.

Put down the object with right hand.
Hold the object with right hand.
Pick up the object with left hand.
Put down the object with left hand.
Hold the object with left hand.
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Figure 13. Confusion matrix of human action classification.

REMOTE USER STUDY
Complying with the requirements of social distancing, we
conducted a remote user study to evaluate the user experience
of the CAPturAR authoring interface. Since the remote users
had no access to the AR-HMD, we developed an AR sim-
ulator on PC where the view of the AR-HMD was fixed as
shown in Figure 14. Also, we directly mapped the handheld
controller operations to the mouse for interactions with the
virtual contents by clicking. We invited 12 users (7 males
and 5 females, whose ages range from 21 to 30) to participate
in a two-session remote user study. 7 out of 12 users have
AR/VR experience, and 8 out of 12 users own commercial IoT
products such as smart light bulbs and smart speakers. None
of the users had experience with our system before the user
study. The study took a consecutive 1.5 hours and each user
was paid 10 dollars for compensation. During the study, each
user ran the software on his/her computer, shared the screen,
and communicated with researchers through online calls. The
entire study processes were screen- and voice-recorded for
post-study analysis. After each session, the users completed a
survey with object Likert-type (scaled 1 to 5) questions, target-
ing on the level of agreement towards the using experience of
the system features. After all sessions were finished, each user
took a conversation-type interview to provide subjective feed-
back and finished a standard System Usability Scale (SUS)
questionnaire (P=Participant).

We asked the users to author CAPs using pre-recorded ac-
tivities generated by one of the researchers performing daily
activities while wearing the AR-HMD (Figure 14 (b)). Totally
14 daily activities were included in the recorded actions, in-
cluding reading books, having meals, drinking coffee, etc. All
the activities happened in a 6mx6m household environment.
The total length of the record is around 20 minutes. Some
of the activities were repeated multiple times. To evaluate
the CAP authored by the users, we created a simulated envi-
ronment that provides similar context information as a real
environment and has virtual IoTs. For each task, We prepared
test records generated using the same approach. After the user
has completed a CAP, we loaded the corresponding record to



Table 1. Descriptions of the user study tasks.
CAP Events Logic Connections and Functions

1 Taking pill. Pill count of the pill bottle minus 1.
2 Having meal. Turn on the music player.

3 (a) Drinking coke.
(b) Throwing the coke can.

(a) →Coke count plus 1.
(b) →Show me a reusable icon above the trash can.

4 (a) Reading a book on the dining table.
(b) Reading a book on the sofa.

(a) →Turn on the floor lamp.
(b) →Turn on the table lamp.

5 (a) Having meal (with Delay 30 minutes).
(b) Taking pill (with Inversion).

(a) →(b)
(b) →Push a notification on the pill bottle.

6
(a) Drinking coffee.
(b) Coffee count on the coffee machine = 2.
(c) Lifting the dumbbell (with Inversion).

(a) →Coffee count on the coffee machine plus 1.
(b) →(c) →Push a notification on the dumbbell.

the simulated environment to test whether the CAP is prop-
erly activated and delivers the correct service. To quantify
the event detection accuracy, we counted the number of true
positive detection (T P), false positive detection (FP) and false
negative detection (FN) during the tests and calculated the
F1 score (2T P/(2T P+FP+FN)) (true negative (T N) is not
available in our case).

Figure 14. User Study Setup: Remote User Study Semi-AR Interface.

Session 1: Creating events
In this session, we test the usability of CAPturAR in defining
human involved events accurately with two of our core fea-
tures, similar event, and adding context attributes. The users
were asked to create two events and author 2 simple CAPs
respectively (CAP 1 and 2 in Table 1). For each event, users
created it in three progressively detailed ways, 1)only select
a human action as the event (Motion-Only-No-Verification),
2) after creating the event, labeling the similar events with
positive and negative (Motion-Only-With-Verification), and
3) add the relevant object attribute into the event (Motion-
Object-With-Verification). After each trial, we loaded the
corresponding test record and counted T P, FP and FN detec-
tions. To challenage our authoring system, we deliberately
put highly comparable movements i.e. taking a pill versus
drinking water or reading-book versus having-meal, in same
test record. Each test record in this session contains 2 TP
detections as ground truth.

Result and discussion. All 12 users completed the author-
ing processes. The precision result is illustrated in Figure
15. By labeling the similar events, the F1 scores of the
two tasks greatly increased (T1: from 50.50% (SD=0.13) to
83.33% (SD=0.08), T2: from 75.63% (SD=0.12) to 92.22%
(SD=0.12)), mainly because of the significant decrease of
the FP detection. The results implied that the similar events
feature helps user better characterize the human actions and
avoid false detection. After adding object attributes into the
events, the precision of the two tasks increased (T1: from
83.33% to 97.22% (SD=0.10), T2 from 92.22% to 98.33%

(SD=0.06)), which shows the importance of associating hu-
man action with context information. Generally, the users
were able to precisely define events with the similar events
and context attributes.
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Session 2: Overall usability
In this session, we aimed to test the overall usability of CAP-
turAR authoring interface with more complex CAPs (CAP
3-6 in Table 1). Each CAP contains 2-3 events and 1-2 IoT
functions. Specifically, CAP 3 has 2 events with same object
attribute (coke) but different human actions (drink and throw).
CAP 4 has 2 events sharing same activities (reading book) but
happens at different locations (by the table versus by the sofa).
CAP 5 requires temporal properties (inverse and delay). CAP
6 is a comprehensive task with 3 events.

Result and discussion. All 12 participants successfully com-
pleted the authoring tasks. The average detection precision of
the four tasks were 94.44% (SD=0.13), 97.22% (SD=0.10),
91.67% (SD=0.29) and 97.22% (SD=0.10), which indicated
that after a short training, most users were able to successfully
author CAPs using our system.

The system feature related Likert-type ratings collected from
the 2-session study are shown in Figure 16. In general, after
the tutorial, the participants were confident to author a human
action dependent context-aware application using our system
and agreed with the intuitiveness and smoothness of our sys-
tem workflow (Q8: AVG=4.42, SD=0.90). “The event mode
and the logic mode are closely integrated. I can easily define
an event, and connect it to a smart function. (P7)” Meanwhile,
the majority of the users appreciated the clear view during
the authoring process (Q10: AVG=4.42, SD=0.90). “I like
the design of replaying the avatar when I hover on the Event
icon but displaying it when I start authoring. It represents the
elements clearly and won’t distract me. (P1)”

We received comments about the visual representations of
the authoring interface. Representing the human movements
using the humanoid avatar was receptive by the users (Q1:
AVG=4.67, SD=0.49). "It’s easy to understand what the
avatar is doing. I think showing me a digital model of myself
can remind me of what I did in the past. (P12)" And the uti-
lization of the avatar during the authoring process was highly
accepted by the users (Q9: AVG=4.75, SD=0.45). “When I
can see what the avatar did in front of me, it becomes much
easier and more straightforward to define a motion I want.
(P8)” Additionally, defining a human motion by trimming the
avatar representation was welcomed by the participants (Q3:



The avatar representation is accurate and 
easy to understand (Q1) 

The three suggestion methods help me 
rapidly navigate the avatar cursor (Q2) 

It’s straightforward to define an event (Q4)

It’s intuitive to define a human action by 
trimming the clip (Q3)

It’s necessary to verify the event definition 
with similar actions (Q5)

It’s coherent to author logic and functions 
using arrowed lines (Q6)

The temporal and logic properties cover my 
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The authoring workflow is easy to follow (Q8)
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Figure 16. Likert-type result after the two-session user study.

AVG=4.50, SD=1.17). “I like the idea of trimming that avatar
to define an action. And sometimes, I thought I did not trim
it precisely, but finally the system still successfully detected it.
(P2)”

We also let users tell us about the features of CAPturAR, such
as suggestion and similar event. The Suggestion feature for
browsing history records was welcomed as a decent feature
(Q2: AVG=4.25, SD=0.75). “That suggestion feature lets me
quickly find what I want from the long history. Actually, you
remind me of using location to find the time point as well.
(P10)” The participants felt confident of precisely defining
an Activity (Q4: AVG=4.67, SD=0.49). “I think I do need
a different number of constraints in different Events because
sometimes I want the function to be triggered easier, and
sometimes more strict. (P5)” And the Similar Activity feature
received complimentary remarks (Q5: AVG=4.25, SD=0.87).

“I’m very satisfied with the Similar Activity feature. When I
can help improve the back-end algorithm of action detection,
I feel much more confident about what I just defined. We all
know the current techniques are still not intelligent enough.
(P11)”

Regarding the experience of authoring CAPs through con-
nections in Logic Mode, the survey result showed positive
feedback (Q6: AVG=4.08, SD=0.79). “I think using arrowed
lines to connect logics and functions is very easy to follow.
(P6)” And the logic options provided mostly covered the re-
quirements in daily life (Q7: AVG=4.25, SD=0.62). “I am not
sure I would use all of the logic connections in one function,
but each of them is definitely necessary in my daily life. Also,
I really like the idea of the Inversion logic. Because I don’t
want the system to bother me when I already have that thing
in mind. (P3)” The standard SUS survey result is 80.33 out
of 100 with a standard deviation of 12.24, illustrating the high
usability of our system.

DISCUSSION AND FUTURE WORK
Defining human action. All the users provided complimen-
tary feedback on defining the human action during authoring,
but some raised an interesting issue. “When I trimmed a
human action, I also wanted the system to give me some rec-
ommendations. (P4)” This finding introduces an essential
consideration when designing human involved CAPs: How
to balance between the customization (such as embodied

demonstration) and the pre-definition of a human action.
One potential solution is to apply a pattern recognition algo-
rithm to the recorded human actions and suggest the user with
candidate segments. However, this may still be a research
question because of the complexity and ambiguity of human
activities.

Defining event. Through the user study, most of the users em-
braced the similar event feature while some users mentioned
an inspiring question. "I wonder after I make several deci-
sions with this feature, your system may already know what
is my intention and can give me some feedback. (P2). Here
raises another question of How to balance between the hu-
man inputs and the computational outcomes to improve
the system performance. Applying AI algorithms may serve
as one potential solution to understand the user’s need and
automatically help the user precisely define an event. From
this perspective, further researches can be conducted on de-
veloping a well-balanced AI system for providing customized
experience based on human guidance.

Detection performance. Regarding the trigger detection,
CAPturAR is proved with high performance when detecting
the authored events. Yet, the dynamic time warping algorithm
we currently adopt relies on the user’s consistency of repeat-
ing the actions. Advanced data comparison algorithms such
as probabilistic methods and deep neural networks could be
applied to improve the system’s robustness further.

Bulky hardware setup. In our work, we applied an AR-
HMD, and a backpack computer to handle the context sensing
and action recognition computation. However the mobility of
the users is limited due to the size of the devices. We envision
the lightweight HMD and advanced cloud service in the future
to remove the bulky setup. Moreover, by integrating more
sensors such as Lidar and IR cameras into a lightweight HMD,
the system would capture more complicated actions and grant
more possibility to the authoring process.

CONCLUSION
In this paper, we presented CAPturAR, an all-in-one system
that allows end-users to create human-involved context-aware
applications. We discussed the CAPturAR framework of mod-
eling human involved CAPs and adopted a workflow of cre-
ating CAPs by referring to a user’s previous recorded daily
activities. To achieve this goal, we proposed an integrated AR-
HMD platform for always-on, non-intrusive activity recording
and context sensing. Further, We developed an AR authoring
interface for creating CAPs through in-situ visual program-
ming. We have demonstrated four different use cases for smart
home environments featuring augmenting non-smart objects,
a healthy life application, a sequential task tutorial, and a tan-
gible AR game. We proved the performance of the AR-HMD
platform in terms of context-aware human action detection
with a system evaluation. Within the remote user study, we
received complimentary feedback on the user experience of
our authoring interface. Therefore, we believe that CAPturAR
opens up a new perspective of incorporating human action into
the context-aware application system and inspires advanced
smart environment construction.
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